Cloning and expression of the transposable chlorobenzoate-3,4-dioxygenase genes of Alcaligenes sp. strain BR60.
نویسندگان
چکیده
Growth on 3-chlorobenzoate was found to induce the enzymes of the protocatechuate meta ring fission pathway in Alcaligenes sp. strain BR60. The chlorobenzoate catabolic genes, designated cba, were localized to a 3.7-kb NotI-EcoRI fragment within the nonrepeated region of the composite transposon Tn5271. The cba genes were cloned onto two broad-host-range vectors and expressed in Escherichia coli and Alcaligenes sp. strain BR6024. In E. coli, expression of the cba genes with the IPTG (isopropyl-beta-D-thiogalactopyranoside)-inducible tac promoter of the IncQ vector pMMB66HE resulted in the production of protocatechuate and chlorodihydroxybenzoate metabolites of 3-chlorobenzoate. Expression of this construct in one orientation resulted in the formation of two polypeptides 51 and 42 kDa in size. This result was confirmed by subcloning into pGEM3Zf and then incorporating L-35S-methionine into newly synthesized proteins, using the thermally regulated T7 polymerase-promoter system. Introduction of the NotI-EcoRI fragment into Alcaligenes sp. strain BR6024 (Cba-P), using the IncP broad-host-range, mobilizable plasmid pBW13, restored the 3-chlorobenzoate-degradative phenotype and resulted in the accumulation of protocatechuate and chlorodihydroxybenzoate intermediates. The data indicate that a two-component dioxygenase specified by Tn5271 oxidizes 3-chlorobenzoate at the 3,4- or 4,5-positions. This activity extends the range of pathways for chloroaromatic compounds known to be functional in the environment. The new pathway avoids the toxicity attributed to the accumulation of chlorocatechol metabolites in bacteria degrading chlorobenzoates.
منابع مشابه
Involvement of a chlorobenzoate-catabolic transposon, Tn5271, in community adaptation to chlorobiphenyl, chloroaniline, and 2,4-dichlorophenoxyacetic acid in a freshwater ecosystem.
A chlorobenzoate-catabolic transposon (Tn5271) was introduced on a conjugative plasmid (pBRC60) in the natural host, Alcaligenes sp. strain BR60, into lake water and sediment flowthrough microcosms. Experimental microcosms were exposed to micromolar levels of 3-chlorobenzoate, 4-chloroaniline, 2,4-dichlorophenoxyacetate, or 3-chlorobiphenyl. The populations of the host, BR60, and organisms carr...
متن کاملIdentification and functional characterization of CbaR, a MarR-like modulator of the cbaABC-encoded chlorobenzoate catabolism pathway.
In Comamonas testosteroni BR60 (formerly Alcaligenes sp. strain BR60), catabolism of the pollutant 3-chlorobenzoate (3CBA) is initiated by enzymes encoded by cbaABC, an operon found on composite transposon Tn5271 of plasmid pBRC60. The cbaABC gene product CbaABC converts 3CBA to protocatechuate (PCA) and 5-Cl-PCA, which are then metabolized by the chromosomal PCA meta (extradiol) ring fission p...
متن کاملCharacterization and regulation of the genes for a novel anthranilate 1,2-dioxygenase from Burkholderia cepacia DBO1.
Anthranilate (2-aminobenzoate) is an important intermediate in tryptophan metabolism. In order to investigate the degradation of tryptophan through anthranilate by Burkholderia cepacia, several plasposon mutations were constructed of strain DBO1 and one mutant with the plasposon insertion in the anthranilate dioxygenase (AntDO) genes was chosen for further study. The gene sequence obtained from...
متن کاملThe chlorobenzoate dioxygenase genes of Burkholderia sp. strain NK8 involved in the catabolism of chlorobenzoates.
Burkholderia sp. NK8 grows abundantly on 3-chlorobenzoate (3CB),4-chlorobenzoate (4CB) and benzoate. The genes encoding the oxidation of (chloro)benzoates (cbeABCD) and catechol (catA, catBC), the LysR-type regulatory gene cbeR and the gene cbeE with unknown function, all of which form a single cluster in NK8, were cloned and analysed. The protein sequence of chlorobenzoate 1,2-dioxygenase (Cbe...
متن کاملCloning and expression of the benzoate dioxygenase genes from Rhodococcus sp. strain 19070.
The bopXYZ genes from the gram-positive bacterium Rhodococcus sp. strain 19070 encode a broad-substrate-specific benzoate dioxygenase. Expression of the BopXY terminal oxygenase enabled Escherichia coli to convert benzoate or anthranilate (2-aminobenzoate) to a nonaromatic cis-diol or catechol, respectively. This expression system also rapidly transformed m-toluate (3-methylbenzoate) to an unid...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Applied and environmental microbiology
دوره 59 11 شماره
صفحات -
تاریخ انتشار 1993